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Abstract 

The topological graph indices ( )Girr  related to the first Zagreb index, 

( )GM1  and the second Zagreb index, ( )GM2  are of the oldest 

irregularity measures researched. Alberton [M. O. Albertson, The 

irregularity of a graph, Ars Combinatoria 46 (1997), 219-225] introduced 

the irregularity of G as 

( ) ( )
( )
∑

∈

=
GEe

eimbGirr ,    ( ) ( ) ( ) .
vue

udvdeimb
=

−=  
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In the paper of Fath-Tabar [G. H. Fath-Tabar, Old and new Zagreb indices 

of graphs, MATCH Communications in Mathematical and in Computer 

Chemistry 65 (2011), 79-84], Alberton’s indice was named the third 

Zagreb indice to conform with the terminology of chemical graph theory. 

Recently Ado et al. [H. Abdo and D. Dimitrov, The total irregularity of a 

graph, arXiv: 1207.5267v1 [math.CO], 24 July 2012] introduced the 

topological indice called total irregularity. The latter could be called the 

fourth Zagreb indice. We define the ± Fibonacci weight, ±
if  of a vertex 

iv  to be ( ),ivdf−  if ( )ivd  is uneven and, ( ),ivdf  if ( )ivd  is even. From 

the aforesaid we define the 
±

f -Zagreb indices. This paper presents 

introductory results for the undirected underlying graphs of Jaco graphs, 

( ),1nJ  .12≤n  For more on Jaco graphs ( )1nJ  see [J. Kok, P. Fisher, B. 

Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of Finite 

Jaco Graphs, ( ),1nJ ,N∈n  arXiv: 1404.0484v1 [math.CO], 2 April 

2014; J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa, 

Characteristics of Jaco Graphs, ( ),aJ∞ ,N∈a  arXiv: 1404.1714v1 

[math.CO], 7 April 2014]. Finally, we introduce the Khazamula irregularity 

as a new topological variant. We also present five open problems. 

1. Introduction 

The topological graph indices ( )Girr  related to the first Zagreb index, 

( ) ( ) ( ) ( )( )
( )( )

∑ ∑
∈ ∈

+==

GVv GEvu

udvdvdGM ,2
1  

and the second Zagreb index, 

( ) ( ) ( )
( )
∑
∈

=

GEvu

udvdGM 2  

are of the oldest irregularity measures researched. Alberton [3] introduced the 

irregularity of G as 

( ) ( )
( )
∑

∈

=

GEe

eimbGirr ,    ( ) ( ) ( ) .
vue

udvdeimb
=

−=  

In the paper of Fath-Tabar [7], Alberton’s indice was named the third Zagreb indice 

to conform with the terminology of chemical graph theory. Recently Ado et al. [1] 
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introduced the topological indice called total irregularity and defined it, 

( ) ( ) ( )

( )
∑

∈

−=

Gvu

t vdudGirr

,

.
2

1
 

The latter could be called the fourth Zagreb indice. 

If the vertices of a simple undirected graph G on n vertices are labelled ,iv  

,...,,3,2,1 ni =  then the respective definitions may be 

( ) ( ) ( ( ) ( )) ( )∑ ∑∑
=

−

= =

∈+==

n

i

n

i

n

j

GEuvjii ji
vdvdvdGM

1

1

1 2

2
1 ,  

( ) ( ) ( ) ( )∑∑
−

= =

∈=

1

1 2

2 ,

n

i

n

j

GEuvji ji
vdvdGM  

( ) ( ) ( ) ( )∑∑
−

= =

∈
−=

1

1 2

3

n

i

n

j

GEuvji
ji

vdvdGM  

and 

( ) ( ) ( ) ( )∑∑
= =

−==

n

i

n

j

jit vdvdGirrGM

1 1

4 2

1
 

( ) ( )∑ ∑
= +=

−=

n

i

n

ij

ji vdvd

1 1

 

or 

( ) ( )∑ ∑
−

= +=

−

1

1 1

.

n

i

n

ij

ji vdvd  

For a simple graph on a singular vertex (1-empty graph), we define ( ) =GM1  

( ) ( ) ( ) .0432 === GMGMGM  
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2. Zagreb Indices in Respect of ± Fibonacci Weights, 

±f -Zagreb Indices 

We define the ± Fibonacci weight, ±
if  of a vertex iv  to be ( ) ,ivdf−  if 

( ) ivd i =  is uneven and, ( ) ,ivdf  if ( )ivd  is even. The ±f -Zagreb indices can now 

be defined as: 

( ) ( ) ( ) ( )∑ ∑∑
=

−

= =

∈
±±±± +==

n

i

n

i

n

j

GEuvjii ji
fffGZf

1

1

1 2

2
1 ,  

( ) ( ) ( )∑∑
−

= =

∈
±±± ⋅=

1

1 2

2 ,

n

i

n

j

GEuvji ji
ffGZf  

( ) ( )∑∑
−

= =

∈
±±± −=

1

1 2

3

n

i

n

j

GEuvji
ji

ffGZf  

and 

( ) ∑∑ ∑ ∑
= = = +=

±±±±± −=−=

n

i

n

j

n

i

n

ij

jiji ffffGZf

1 1 1 1

4 2

1
 

or 

∑ ∑
−

= +=

±± −

1

1 1

.

n

i

n

ij

ji ff  

For a simple graph on a singular vertex (1-empty graph), we define 

( ) ( ) ( ) ( ) .04321 ==== ±±±± GZfGZfGZfGZf  

2.1. Application to Jaco graphs, ( ),1nJ  N∈n  

For ease of reference some definitions in [9] are repeated. A particular family of 

finite directed graphs (order 1 ) called Jaco Graphs and denoted by ( ),1nJ  N∈n  

are directed graphs derived from a particular well-defined infinite directed graph 

(order 1 ), called the 1-root digraph. The 1-root digraph has four fundamental 
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properties which are; ( )( ) { }N∈|=∞ ivJV i1  and, if jv  is the head of an edge (arc) 

then the tail is always a vertex ,iv  ji <  and, if ,kv  for the smallest N∈k  is a tail 

vertex then all vertices ,�v  jk << �  are tails of arcs to jv  and finally, the degree 

of vertex k is ( ) .kvd k =  The family of finite directed graphs are those limited to 

N∈n  vertices by lobbing off all vertices (and edges arcing to vertices) ,tv  .nt >  

Hence, trivially we have ( ) ivd i ≤  for .N∈i  

Definition 2.1. The infinite Jaco graph ( )1∞J  is defined by ( )( ) { },1 N∈|=∞ ivJV i  

( )( ) {( ) }jijivvJE ji <∈|⊆∞ ,,,1 N  and ( ) ( )( )1, ∞∈ JEvv ji  if and only if 

( ) ,2 jvdi i ≥− −  [9]. 

Definition 2.2. The family of finite Jaco graphs are defined by 

( ) ( ){ }.11 N∈|⊆ ∞ nJJn  A member of the family is referred to as the Jaco graph, 

( ),1nJ  [9]. 

Definition 2.3. The set of vertices attaining degree ( )( )1nJ∆  is called the 

Jaconian vertices of the Jaco graph ( ),1nJ  and denoted, ( )( )1nJJ  or, ( )1nJ  for 

brevity, [9]. 

From [9] we have Bettina’s theorem. 

Theorem 2.1. Let { }...,,,, 3210 ffff=F  be the set of Fibonacci numbers and 

let ,
21 riii fffn +++= �  N∈n  be the Zeckendorf representation of n. Then 

( ) .111 21 −−−
+

+++=
riiin fffvd �  

Note. The degree of vertex ,iv  denoted ( )ivd  refers to the degree in ( )1∞J  

hence ( ) .ivd i =  In the finite Jaco graph the degree of vertex iv  is denoted 

( ) ( ).1nJivd  The degree sequence is denoted 

( ( ) ( ) ( ) ( ) ( ) ( ) )....,,,
11211 nnn JnJJn vdvdvd=D  

By convention ( ) ( ).111 nJiii vd ++ = ∪DD  
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2.1.1. Algorithm to determine the degree sequence of a finite Jaco graph, ( ),1nJ  

N∈n  

Consider a finite Jaco Graph ( ),1nJ  N∈n  and label the vertices 

....,,,, 321 nvvvv  

Step 0. Set .nn =  Let .1== ji  If ,1== nj  let ( )0=iD  and go to Step 6, 

else set ∅=iD  and go to Step 1. 

Step 1. Determine the jth Zeckendorf representation say, 

riii fffj +++= �
21

 and go to Step 2. 

Step 2. Calculate ( ) ,111 21 −−−
+

+++=
riiij fffvd �  then go to Step 3. 

Step 3. Calculate ( ) ( ),jj vdjvd
+−

−=  and let ( ) ( ) ( ),jjj vdvdvd
−+

+=  

then go to Step 4. 

Step 4. If ( ) ,nvd j ≤  set ( ) ( ) ( )jJj vdvd
n

=1  else, set ( ) ( ) ( ) += −
jJj vdvd

n 1  

( )jn −  and set ( ) ( )1nJjij vd∪DD =  and go to Step 5. 

Step 5. If nj =  go to Step 6 else, set 1+= ii  and ij =  and go to Step 1. 

Step 6. Exit. 

2.1.2. Tabled values of ( )( ),1nJ±
F  for finite Jaco graphs, ( ),1nJ  12≤n  

For illustration the adapted table below follows from the Fisher algorithm [9] for 

( ),1nJ  .12≤n  Note that the Fisher algorithm determines ( )ivd +  on the assumption 

that the Jaco graph is always sufficiently large, so at least ( ),1nJ  ( ).ivdin ++≥  

For a smaller graph the degree of vertex iv  is given by ( ) ( ) =
1nJivd  

( ) ( ).invd i −+−  In [9] Bettina’s theorem describes an arguably, closed formula to 

determine ( ).ivd +  Since ( ) ( )ii vdnvd +− −=  it is then easy to determine 

( ) ( )1nJivd  in a smaller graph ( ),1nJ  ( ).ivdin ++<  The ±
if  -sequence of ( )1nJ  is 

denoted ( )( ).1nJ±
F  
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Table 1 

N∈i  ( )ivd −  ( ) ( )ni vdivd −+ −=  ( )( )1iJ±
F  

1 0 1 (0) 

2 1 1 ( )1,1 −−  

3 1 2 ( )1,1,1 −−  

4 1 3 ( )1,1,1,1 −−  

5 2 3 ( )1,1,2,1,1 −−  

6 2 4 ( )1,2,2,2,1,1 −−−−  

7 3 4 ( )2,2,3,3,2,1,1 −−−−  

8 3 5 ( )2,3,3,5,3,2,1,1 −−−−  

9 3 6 ( )2,3,5,5,5,3,2,1,1 −−−−−−  

10 4 6 ( )3,3,5,8,8,5,3,2,1,1 −−−−  

11 4 7 ( )3,5,5,8,13,8,5,3,2,1,1 −−−−−−  

12 4 8 ( )3,5,8,8,13,13,8,5,3,2,1,1 −−−−−−  

It is known that a sequence ( )ndddd ...,,,, 321  of non-negative integers is a 

degree sequence of some graph G if and only if ∑ +

n

ii id  is even. It implies that a 

degree sequence has an even number of odd entries. Hence, we know that the       

±
if -sequence of ( )1nJ  denoted, ( )( ),1nJ±

F  N∈n  has an even number of, ( )ivdf−  

entries. Following from Table 1 the table below depicts the values ( )( ),11 nJZf ±  

( )( ),12 nJZf ±  ( )( )13 nJZf ±  and ( )( )14 nJZf ±  for ( ),1nJ  .12≤n  
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Table 2 

N∈i  ( )ivd −  ( )ivd +  ( )( )11 iJZf ±  ( )( )12 iJZf ±  ( )( )13 iJZf ±  ( )( )14 iJZf ±  

1 0 1 0 0 0 0 

2 1 1 2 1 0 0 

3 1 2 3 –2 4 4 

4 1 3 4 –1 4 8 

5 2 3 8 –6 11 16 

6 2 4 15 5 11 25 

7 3 4 32 –26 35 56 

8 3 5 62 –19 50 98 

9 3 6 103 0 72 138 

10 4 6 211 38 119 251 

11 4 7 396 –238 210 402 

12 4 8 604 –158 273 566 

3. Khazamula Irregularity 

Let →
G  be a simple directed graph on 2≥n  vertices labelled 

....,,,, 321 nvvvv  Let all vertices iv  carry its ± Fibonacci weight, ±
if  related to 

( ) ( ( ) ( )).iii vdvvdvd −+ +=  Also let vertex jv  be a head vertex of iv  and choose 

any ( ) ( ( ) ).max
jvj

h
i vdvd ∀=  

Definition 3.1. Let →
G  be a simple directed graph on 2≥n  vertices with each 

vertex carrying its ± Fibonacci weight, .±
if  For the function ( ) ,cmxxf +=  

R∈x  and ,, Z∈cm  we define the Khazamula irregularity as: 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
k

h
i

i

dxxfGirr

1

.  



A NOTE ON ±f -ZAGREB INDICES IN RESPECT OF JACO GRAPHS … 

 

23 

Note. Vertices v with ( ) ,0=+ vd  are headless and the corresponding integral 

terms to the summation are defined zero. Hence, ( ) .01 =→Kirrk  

Let G be a simple connected undirected graph on n vertices which are labelled, 

....,,,, 321 nvvvv  Also let G have ε edges. It is known that G can be orientated in 

ε2  ways, including the cases of isomorphism. Finding the relationship between the 

different values of ( )→Girrk  and ( )→Girr c
k  (to follow in Subsection 3.3) in respect 

of the different orientations for G in general is stated as an open problem. In this 

section, we give results in respect of particular orientations of paths, cycles, wheels 

and complete bipartite graphs. 

3.1. kirr  for paths, cycles, wheels and complete bipartite graphs 

Proposition 3.1. For a directed path ,→
nP  2≥n  which is consecutively 

directed from left to right we have that the Khazamula irregularity, 

( ) ( ) .2
2

3
ncmnPirr nk +−=→  

Proof. Label the vertices of the directed path →
nP  consecutively from left to 

right ....,,,, 321 nvvvv  From the definition 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
nk

h
i

i

dxxfPirr

1

,  

it follows that we have 

( )
( )

( ) ( )

( )

( ) .
1

1

-3

2

1

2

1
1

2

1 ∫∫ ∫∑ ∫∫ ++++=

−

=
−

±
dxxfdxxfdxxfdxxf

termsn

n

i

vd

f

h
i

i ���� ����� ��

�  

So, we have 

( )
( )

( )∑ ∫
=

−
+






 +−+






 +=

±

n

i

vd

f
cxmxncxmxdxxf

h
i

i1

2
1

22
1

2 0
2

1
3

2

1
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( ) 





 −−+−++−+= cmcmncmcm

2

1
223

2

1
22  

( ) ( )cnmncm 33
2

3
3

2

3
−+−++=  

( ) .2
2

3
ncmn +−=  ~ 

Proposition 3.2. For a directed cycle 
→
nC  which is consecutively directed 

clockwise we have that the Khazamula irregularity, 

( ) .
2

3
cmnCirr nk +=→  

Proof. Label the vertices of the directed cycle →
nC  consecutively clockwise 

....,,,, 321 nvvvv  So vertices carry the ± Fibonacci weight, .11 ==±

∀
ff

ii
 Also a 

head vertex is always unique with degree .2=  From the definition 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
nk

h
i

i

dxxfCirr

1

,  

it follows that we have 

( )
( )

( ) ( ) ( )

�������� ��������� ��

�

termsn

n

i

vd

f
dxxfdxxfdxxfdxxf

h
i

i

-

2

1

2

1

2

1
1

∫∫∫∑ ∫ +++=

=
±

 

2
1

2

2

1
|





 += cxmxn  







 −−+= cmcmn

2

1
22  

.
2

3

2

3
cmncmn +=






 +=  ~ 

Proposition 3.3. For a directed Wheel graph 
( )
→

n
W

,1
 with the axle vertex 1u  and 

the wheel vertices nvvv ...,,, 21  and the spokes directed ( )
iivu

∀
,1  and the wheel 
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vertices directed consecutively clockwise ,...,,, 21 nvvv  we have that 

( ( ))

( )

( )

















+++






 +−

=

+−+






 +−

=

→

.,35
2

95

,,35
2

95

2

2

,1

unevenisnifcfnm

fn

evenisnifcfnm

fn

Wirr

n

n

n

n

nk  

Proof. Consider a Wheel graph 
( )
→

n
W

,1
 with the axle vertex 1u  and the wheel 

vertices nvvv ...,,, 21  and the spokes directed ( )
iivu

∀
,1  and the wheel vertices 

directed consecutively clockwise ....,,, 21 nvvv  

Case 1. If n is even, then ( )1ud  is even and carries the ± Fibonacci weight, .nf  

Obviously the wheel vertices have ( ) ,3 iivd ∀=  hence carry the ± Fibonacci weight, 

.23 ivf ∀−=  So from the definition of the Khazamula irregularity we have that: 

(
( )

) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
nk

h
i

i

dxxfWirr

1
,1

 

( ) ( )∫ ∫−
+=

3

2

3

nf
dxxfdxxfn  

if n is even. This results in, 

( )
( )

∑ ∫
=

±
=

n

i

vd

f
k

h
i

i

dxxfirr

1

 














−−++






 +−+= cfm

f
cmcmcmn n

n

2
3

2

9
223

2

9
2

 

cfm
f

cmncnm n
n −−+++=
2

3
2

9
5

2

5
2
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( ) .35
2

95
2

cfnm

fn

n

n

+−+






 +−

=  

Case 2. If n is uneven, then ( )1ud  is uneven and carries the ± Fibonacci weight, 

.nf−  So in the Riemann integral ( )∫−

3

nf
dxxf  we have .

2
3

2

9
2














+−+ cfm

f
cm n

n  

So the result 

(
( )

) ( )cfnm

fn

Wirr n

n

nk 35
2

95
2

,1
+++







 +−

=→  

if n is uneven, follows. ~ 

Consider the complete bipartite graph ( )mnK ,  and call the n vertices the left-side 

vertices and the m vertices the right-side vertices. Orientate ( )mnK ,  strictly from   

left-side vertices to right-side vertices to obtain 
( )

.
,

rl
mn

K →  

Proposition 3.4. For the directed graph 
( )

,
,

rl
mn

K →
 we have that 

(
( )

)

( )

( )



















++










−

=

−+










−

=

→

.,
2

,,
2

2

23

2

23

,

unevenismifcfnnm

fnn

evenismifcfnnm

fnn

Kirr

m

m

m

m

rl
mnk  

Proof. For the directed graph 
( )

rl
mn

K →
,

 we have that all left-side vertices say 

nvvv ...,,, 21  have ( ) ,mvd i =+  whilst all right-side vertices say muuu ...,,, 21  

have ( ) nud i =−  and ( ) .0=+
iud  



A NOTE ON ±f -ZAGREB INDICES IN RESPECT OF JACO GRAPHS … 

 

27 

Case 1. If m is even it follows from the definition that, 

(
( )

) ( ) .
, ∫=

→
n

f

rl
mnk

m

dxxfnKirr  

So, we have that 

(
( )

) n
f

rl
mnk

m
cxmxnKirr |





 +=→ 2

, 2

1
 














+−+= cfm

f
ncm

n
n m

m

22

22

 

( )
( ) .

2
2

23

cfnnm
fnn

m
m −+

−
=  

Case 2. If m is uneven the left-side vertices all carry the ± Fibonacci weight, 

.mf−  Hence, the result follows as in Case 1, accounting for .mf−  ~ 

Example problem 1. Let 1=n  or 5 and ( ) .mxxf =  Prove that (
( )

) =→
nk Kirr

,1
 

0 or m12 and, 

(
( )

)

( (
( )

))












==

=

→

→

.605

0

,1

,1

mKirr

orKirr

nk

rl
nk  

Proof. Let 1=n  and let ( ) .mxxf =  From the definition of ( )→Girrk  it 

follows that 

(
( )

) ∫−
−−

→
=|=⋅=

1

1

1
1

2
,1

.0
2

1

1
xmdxxmKirr

vfornk  

We also have that 

(
( )

) ∫−
−

→
⋅=

1

1
,1 1ufornk dxxmKirr  
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.0
2

1 1
1

2 =|=
−

xm  

Let 5=n  and let ( ) .xmxf =  Now, we have that 

(
( )

) ∫−
−−

→
=|=⋅=

1

5

1
5

2
,1

.12
2

1

1
mxmdxxmKirr

vfornk  

For (
( )

)→
nk Kirr

,1
 we have 

∑∫
=

−
=−

⋅

5

1

5

1
5...,,2,1,

i

iufor i
dxxm  

.60125
2

1
55

5
1

2
5

1
mmxmdxxm ==|=








⋅= −

−∫  

3.2. Khazamula’s theorem 

Consider two simple connected directed graphs, →
G  and .→

H  Let the vertices 

of →
G  be labelled nvvv ...,,, 21  and the vertices of →H  be labelled 

....,,, 21 muuu  Define the directed join as ( )→→→ + HG  conventionally, with the 

arcs {( ) ( ) ( )}.,,
→→

∈∈∀| HVuGVvuv jiji  

Theorem 3.5. Consider two simple connected directed graphs, →
G  on n 

vertices and 
→H  on m vertices then, 

(( ) ) ( ) ( )
( )

( )

(( )

( )
.

1

1

1
∫ ∑∫

+∆

|
=

+
→→→

→

→→
+

→
∈

±
+

+=+
nH

f

m

i

ud

f
k

HGViv
i

h
i

iud

dxxfdxxfnHGirr  

Proof. Note that in the graph →
G  the maximum degree 

( ) (( ( ) ( )) 1max −≤+=∆ −+→ nvdvdG ��  

for at least one vertex .�v  If such a vertex �v  is indeed the head vertex of a vertex 

,tv  then 
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( )
( )

∑ ∫
=

±

n

i

vd

f

h
i

i

dxxf

1

,  

will contain the term ( )
( )

∫
∆

±

G

fi
dxxf .  

In →H  the maximum degree ( ) ( ( ) ( )) 1max ≥+=∆ −+→
ss ududH  for some 

vertex .su  Hence, in the directed graph ( ) ,
→→→ + HG  all terms of 

( )
( )

∑ ∫
=

±

n

i

vd

f

h
i

i

dxxf

1

 

reduces to zero and are replaced by the terms 

( )

(( ) )

( )

∫
+∆

|

→

→→+→∈

±

nH

f
HGViv

i

dxxf ,  

because ( ) ( ) .1 nHnG +∆<−≤∆ →→  

In respect of →H  we have that each ( )
iiud

∀
 increases by exactly 1 so the value 

of ( )
iiudf ∀

 switches between ±  and adopts the value ( ) .1+iudf  Similarly all head 

vertices’ degree increases by exactly 1. These observations result in 

(( ) ) ( ) ( )
( )

( )

(( ) )

( )
.

1

1

1
∫ ∑∫

+∆

|
=

+
→→→

→

→→
+

→
∈

±
+

+=+
nH

f

m

i

ud

f
k

HGViv
i

h
i

iud

dxxfdxxfnHGirr  ~ 

Example problem 2. An application of the Khazamula theorem to the graph 

( )→→ + 1KCn  in respect of ( ) ,mxxf =  results in 

(( ) ) ( ) ( ) ( ) .4
3

1 2
1 xmxfnknk CirrnKCirr =

→→→ |−=+  

3.3. Khazamula c-irregularity for orientated paths, cycles, wheels and complete 

bipartite graphs 

Let ( ) ,22 xrxf −=  R∈x  and { ( ) ( ) ( ) }.or,max
1, iii vivdvi fvdr

∀
±

≥∀
−=  
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We define Khazamula c-irregularity as 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f

c
k

h
i

i

dxxfGirr

1

.  

It is known that 

.arcsin
22

1 2
2222∫ |










+−=−

b

a

b
ar

xr
xrxdxxr  

Also note that arcsinθ applies to 




 ππ
−∈θ

2
,

2
 to ensure a singular value for the 

respective integral terms. 

Proposition 3.6. For a directed path ,→
nP  3≥n  which is consecutively 

directed from left to right we have that the Khazamula c-irregularity, 

( ) ( ) .
2

3

3

2
2 








−

π
−=

→
nPirr n

c
k  

Proof. Label the vertices of the directed path ,→
nP  3≥n  consecutively from 

left to right ....,,,, 321 nvvvv  Note that { ( ) ( ) } .2or,max ==
∀

±
∀ ii vivi fvdr  

From the definition 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
n

c
k

h
i

i

dxxfPirr

1

,  

it follows that we have 

( )
( )

( ) ( )

( )

( )∫∫ ∫∑ ∫∫ ++++=

−

=
−

±

1

1

-3

2

1

2

1
1

2

1
dxxfdxxfdxxfdxxf

termsn

n

i

vd

f

h
i

i ���� ����� ��

�  

So, we have 

( )
( )

∑ ∫
=

±

n

i

vd

f

h
i

i

dxxf

1

 

( ) 2
1

2
222

1

2
22 arcsin

22

1
3arcsin

22

1
|









+−−+|










+−= − r

xr
xrxn

r

xr
xrx  
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( ) 2
1

22
1

2

2
arcsin24

2

1
3

2
arcsin24

2

1
|





 +−−+|






 +−= −

x
xxn

x
xx  

( ) 







−

π
−+








−

π
=

2

3

3

2
3

2

3

3

2
n  

( ) 







−

π
−=

2

3

3

2
2n  

( ) .
2

3

3

2
2 








−

π
−= n  ~ 

Proposition 3.7. For a directed cycle 
→
nC  which is consecutively directed 

clockwise we have that the Khazamula c-irregularity, ( ) .
2

3

3

2








−

π
=

→
nCirr n

c
k  

Proof. Label the vertices of the directed cycle →
nC  consecutively clockwise 

....,,,, 321 nvvvv  So all vertices carry the ± Fibonacci weight, .11 ==±

∀
ff

i
i

 Also 

a head vertex is always unique with degree .2=  So 

{ ( ) ( ) } .2or,max ==
∀

±
∀ ii vivi fvdr  

From the definition 

( ) ( )
( )

∑ ∫
=

→

±
=

n

i

vd

f
nk

h
i

i

dxxfCirr

1

,  

it follows that we have 

( )
( )

( ) ( ) ( )∑ ∫ ∫ ∫∫
=

+++=
±

n

i

termsn

vd

f
dxxfdxxfdxxfdxxf

h
i

i1

-

2

1

2

1

2

1 �������� ��������� ��

�  

2
1

2

2
arcsin24

2

1
|





 +−=

x
xxn  









−−+=

2

1
arcsin2

2

3
1arcsin20n  
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







−

π
=

2

3

3

2
n  

.
2

3

3

2








−

π
= n  ~ 

Proposition 3.8. For a directed Wheel graph 
( )
→

n
W

,1
 with the axle vertex 1u  and 

the wheel vertices nvvv ...,,, 21  and the spokes directed ( )
iivu

∀
,1  and the wheel 

vertices directed consecutively clockwise ,...,,, 21 nvvv  we have that: 

( )
( ) ( )

( ) ( )















≥+
π

+++−+=

≥+
π

−++−+=

=+π+=

→

,5,
4

3
arcsin

2
191

2

3

,6,
4

3
arcsin

2
191

2

3

,43,
3

2
arcsin18954

22
2

22
2

,1

unevenandnifB
f

f

f
nfn

evenandnifA
f

f

f
nfn

ornif

Wirr

n

n

n
n

n

n

n
nnk

 

with 














+−=

n

n
n f

f
fnA

2
arcsin

2
4

2
2

  and .
2

arcsin
2

4
2

2














−−=

n

n
n f

f
fnB  

Proof. Consider a Wheel graph 
( )
→

n
W

,1
 with the axle vertex 1u  and the wheel 

vertices nvvv ...,,, 21  and the spokes directed ( )
iivu

∀
,1  and the wheel vertices 

directed consecutively clockwise ....,,, 21 nvvv  

Case 1. If ,3=n  then we have that 

( ( )) ,939

,

3

2

2

,

3

2

2
3,1

1

�� ��� ���� ��� ��
ivforufor

c
k dxxdxxWirr ∫∫ −−

→ −+−=    .3,2,1=i  

Therefore, 

(
( )

) 







−= ∫−

→
3

2

2
3,1

94 dxxWirr
c
k  



A NOTE ON ±f -ZAGREB INDICES IN RESPECT OF JACO GRAPHS … 

 

33 

3
2

2

3
arcsin

2

9
9

2

1
4 −|






 +−=

x
xx  















 −−−−=

3

2
arcsin

2

9
491arcsin

2

9
4  

.
3

2
arcsin18954 +π+=  

If ,4=n  then 

(
( )

) ,949

,

3

2

2

,

3

3

2
4,1

1

�� ��� ���� ��� ��
ivforufor

c
k dxxdxxWirr ∫∫ −

→ −+−=    .4,3,2,1=i  

Hence, the result follows. 

Case 2. If 6≥n  and even, then we have 

(
( )

) ,

,

3

2

22

,

3
22

,1

1

��� ���� ���� ��� ��
i

n

vfor

n

ufor

f
nn

c
k dxxfndxxfWirr ∫∫ −

→ −+−=    ....,,2,1 ni =  

So, we have 

(
( )

)→
n

c
k Wirr

,1
 

3
2

2
223

2
22

arcsin
22

1
arcsin

22

1
−|













+−+|













+−=

n

n
nf

n

n
n f

xf
xfxn

f

xf
xfx

n
 














+−−+−= 1arcsin

22

3
arcsin

2
9

2

3
2

22
2

2 n
nn

n

n

n
n

f
ff

f

f

f
f  




























−−−−+−+

n

n
n

n

n
n f

f
f

f

f
fn

2
arcsin

2
4

3
arcsin

2
9

2

3
2

2
2

2
 














+−−+−= 1arcsin

22

3
arcsin

2
9

2

3
2

22
2

2 n
nn

n

n

n
n

f
ff

f

f

f
f  
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












+−++−+

n

n
n

n

n
n f

f
f

f

f
fn

2
arcsin

2
4

3
arcsin

2
9

2

3
2

2
2

2
 

( ) ( ) ,
4

3
arcsin

2
191

2

3
22

2 A
f

f

f
nfn n

n

n
n +

π
+++−+=  

with .
2

arcsin
2

4
2

2














+−=

n

n
n f

f
fnA  

Case 3. Similar to Case 2 and accounting for 5≥n  and uneven. ~ 

Consider the complete bipartite graph ( )mnK ,  and call the n vertices the left-side 

vertices and the m vertices the right-side vertices. Orientate ( )mnK ,  strictly from  

left-side vertices to right-side vertices to obtain 
( )

.
,

rl
mn

K →  

Proposition 3.9. For the directed graph 
( )

rl
mn

K →
,

 we have that: 

( ( ))





















>
π

+=

>
π

−=

≥+
π

=

≥−
π

=

→

,,
4

,,
4

,,
4

,,
4

2

2

2

2

,

unevenismandnfif
f

B

evenismandnfif
f

B

unevenismandfnifA
n

evenismandfnifA
n

Kirr

m
m

m
m

m

m

rl
mn

c
k  

with 
n

fn
fn

f
A m

m
m arcsin

22

2
22 +−=  and .arcsin

22

2
22

m

m
m f

nf
nf

n
B +−=  

Proof. For the directed graph 
( )

rl
mn

K →
,

 we have that all left-side vertices say 

nvvv ...,,, 21  have ( ) ,mvd i =+  whilst all right-side vertices say muuu ...,,, 21  

have ( ) nud i =−  and ( ) .0=+
iud  
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Case 1. Since ( ) ,0=+
iud  i∀  the terms in 

( )
( )

∑ ∫
=

±

n

i

vd

f

h
i

i

dxxf

1

,  

stem from vertices ,iv  i∀  only. Furthermore, since 

{ ( ) ( ) }mudii fudr
i

or,max
1, ≥∀

−=  

and ,mfn ≥  we have .nr =  

It follows that 

(
( )

) ∫ −=
→

n

f

rl
mn

c
k

m

dxxnnKirr
22

,
 

n
fmn

xn
xnx |








+−= arcsin

22

1 2
22  









+−−=

n

fn
fn

fn m
m

m arcsin
22

1arcsin
2

2
22

2

 

,
4

2

A
n

−
π

=  

with 

.arcsin
22

2
22

n

fn
fn

f
A m

m
m +−=  

Case 2. Similar to Case 1 and accounting for m is uneven. 

Case 3. Similar to Case 1 and accounting for ,nfm >  m is even. 

Case 4. Similar to Case 1 and accounting for ,nfm >  m is uneven. ~ 

[Open problem: If possible, generalize Khazamula’s irregularity for simple 

directed graphs.] 
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[Open problem: Find a closed or, recursive formula for ( )( ),11 nJZf ±   

( )( ),12 nJZf ±  ( )( )13 nJZf ±  and ( )( ) ].14 nJZf ±  

[Open problem: Where possible, describe the terms of the Khazamula theorem 

in terms of ( )→Girrk  and ( )→Hirrk  for specialised classes of simple directed 

graphs.] 

[Open problem: If possible, formulate and prove Khazamula’s c-Theorem 

related to Khazamula c-irregularity for simple directed graphs in general.] 

[Open problem: Let G be a simple connected undirected graph on n vertices 

labelled, ....,,,, 321 nvvvv  Also let G have ε edges. It is known that G can be 

orientated in ε2  ways, including the cases of isomorphism. Find the relationship 

between the different values of ( )→Girrk  in respect of the different orientations.] 

[Open problem: Let G be a simple connected undirected graph on n vertices 

labelled, ....,,,, 321 nvvvv  Also let G have ε edges. It is known that G can be 

orientated in ε2  ways, including the cases of isomorphism. Find the relationship 

between the different values of ( )→Girr c
k  in respect of the different orientations.] 

Open access. This paper is distributed under the terms of the Creative Commons 

Attribution License which permits any use, distribution and reproduction in any 

medium, provided the original author(s) and the source are credited. 
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