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Abstract

The topological graph indices irr(G) related to the first Zagreb index,
M(G) and the second Zagreb index, M,(G) are of the oldest
irregularity measures researched. Alberton [M. O. Albertson, The

irregularity of a graph, Ars Combinatoria 46 (1997), 219-225] introduced
the irregularity of G as

irr(G) = Zimb(e), imb(e) = d(v) —d(u)|,_,,-
ec E(G)
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In the paper of Fath-Tabar [G. H. Fath-Tabar, Old and new Zagreb indices
of graphs, MATCH Communications in Mathematical and in Computer
Chemistry 65 (2011), 79-84], Alberton’s indice was named the third
Zagreb indice to conform with the terminology of chemical graph theory.
Recently Ado et al. [H. Abdo and D. Dimitrov, The total irregularity of a
graph, arXiv: 1207.5267v1 [math.CO], 24 July 2012] introduced the
topological indice called total irregularity. The latter could be called the

fourth Zagreb indice. We define the * Fibonacci weight, f;—r of a vertex

v; tobe —fy(,), if d(v;) is uneven and, fy(,,), if d(v;) is even. From

the aforesaid we define the f * -Zagreb indices. This paper presents

introductory results for the undirected underlying graphs of Jaco graphs,
J,(1), n <12. For more on Jaco graphs J,(1) see [J. Kok, P. Fisher, B.

Wilkens, M. Mabula and V. Mukungunugwa, Characteristics of Finite
Jaco Graphs, J,(1), ne N, arXiv: 1404.0484v1 [math.CO], 2 April

2014; J. Kok, P. Fisher, B. Wilkens, M. Mabula and V. Mukungunugwa,
Characteristics of Jaco Graphs, J.(a), a€ N, arXiv: 1404.1714v1

[math.CO], 7 April 2014]. Finally, we introduce the Khazamula irregularity

as a new topological variant. We also present five open problems.

1. Introduction

The topological graph indices irr(G) related to the first Zagreb index,

MiG)= D )= Y (d)+dw),

veV(G) vue E(G)

and the second Zagreb index,

My(G)= D dv)dw)

vue E(G)

are of the oldest irregularity measures researched. Alberton [3] introduced the

irregularity of G as

e=vu"’

ir(G)= Y imble), imb(e)=|d(v)-d(w)]
ec E(G)

In the paper of Fath-Tabar [7], Alberton’s indice was named the third Zagreb indice
to conform with the terminology of chemical graph theory. Recently Ado et al. [1]
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introduced the topological indice called total irregularity and defined it,

2 Y ldw-de)|

u,ve(G)

irr,(G) =

The latter could be called the fourth Zagreb indice.

If the vertices of a simple undirected graph G on n vertices are labelled v;,

i=1,2,3, .., n, then the respective definitions may be

n n=1 n
Ml(G)=Zd2(vi)= Z(d(vi)‘l'd(vj))v[ujeE(G)’
i=1 i=l j=2
n—1 n
My(G) = sz(vi)d(vj)viujeE(G)’
i=1 j=2
n—-1 n
M;(G) = ZZI d(vi) =d)) |, cp©)
i=l j=2
and
. AN
M4(G)=zrrt(G)=§ |d(V) d(V )|
i=l j=
- | d(v;)—d(v;)]
i=1 j=i+l
or

n-1 n
> ) -dl) .

i=1 j=i+1

For a simple graph on a singular vertex (1-empty graph), we define M,(G) =
M,(G) = M5(G) = M4(G) =
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2. Zagreb Indices in Respect of * Fibonacci Weights,
f * -Zagreb Indices

We define the = Fibonacci weight, fl-ir of a vertex v; to be —fy(,), if

d(v;) =i is uneven and, fd(vi)’ if d(v;) is even. The fi -Zagreb indices can now

be defined as:
n n=1 n
£72,(G) = Z(fii)z ~ ZZ“ fE1+] fjir |)Vi”j€E(G)’
i=l1 i=l j=2
n-1 n
i
n-1 n
fz;(6) = | f5 - f} |viujeE(G)
i=1 j=2
and
1 n n n n
1*24©) =3 2 D 1 F =17 1= 2, D1 4~ 1]
e i=1 j=i+l
or

n-1 n
Z Z' fii_fjil'

i=1 j=i+1
For a simple graph on a singular vertex (1-empty graph), we define

F*21(G) = f*2,5(G) = f*23(G) = f*Z4(G) = 0.

2.1. Application to Jaco graphs, J,(1), ne€ N

For ease of reference some definitions in [9] are repeated. A particular family of
finite directed graphs (order 1) called Jaco Graphs and denoted by J,(1), ne N

are directed graphs derived from a particular well-defined infinite directed graph

(order 1 ), called the 1-root digraph. The 1-root digraph has four fundamental
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properties which are; V(J (1)) = {v; |i € N} and, if v ; is the head of an edge (arc)
then the tail is always a vertex v;, i < j and, if v;, for the smallest k € N is a tail
vertex then all vertices v,, k < { < j are tails of arcs to v; and finally, the degree

of vertex k is d(v;) = k. The family of finite directed graphs are those limited to
n e N vertices by lobbing off all vertices (and edges arcing to vertices) v,, ¢t > n.

Hence, trivially we have d(v;) <i for i e N.

Definition 2.1. The infinite Jaco graph J (1) is defined by V(J (1)) ={v;|ie N},
E(Jo (D) c{(vi, vj)li,je N,i< j} and (v;,vj)e E(J,(1)) if and only if
2i—d”(v;) 2 j, [9].

Definition 2.2. The family of finite Jaco graphs are defined by
{J,() € J.(1)|n € N}. A member of the family is referred to as the Jaco graph,

J, (1), [9].

Definition 2.3. The set of vertices attaining degree A(J, (1)) is called the
Jaconian vertices of the Jaco graph J, (1), and denoted, J(J,(1)) or, J,(1) for
brevity, [9].

From [9] we have Bettina’s theorem.

Theorem 2.1. Let F = {fy, fi, f2, f3. ...} be the set of Fibonacci numbers and

let n = fil + fiz +-0+ fir , ne€ N be the Zeckendorf representation of n. Then

d*(vp) = fym1 + fiyt +o+ fi 1o

Note. The degree of vertex v;, denoted d(v;) refers to the degree in J (1)
hence d(v;) =i In the finite Jaco graph the degree of vertex v; is denoted

d(v;) 7,0y The degree sequence is denoted

D, =(d1);, 1) d02) 5, ) - A0, 0))-

By convention ;. =D; U d(vi+1)1 a)
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2.1.1. Algorithm to determine the degree sequence of a finite Jaco graph, J, (1),
ne N

Consider a finite Jaco Graph J,(1), ne N and label the vertices

V1, V2, V3, ooy Vo

Step0.Set n=n. Let i=j=1.1If j=n=1, let D; =(0) and go to Step 6,
else set ); = & and go to Step 1.

Step 1= Determine the  jth Zeckendorf representation
j=fi +fi, ++-+ f; andgoto Step 2.

say,

Step 2. Calculate d+(vj) = fi-1 + fiy-1 + -+ fi -1, then go to Step 3.

Step 3. Calculate d ™ (v;)=j—d"(v;), and let d(v;)=d" (v;)+d (v}),
then go to Step 4.

Step 4. If d(V]) < n, set d(vj)fn(l) = d(VJ) elSC, set d(v])Jn(l) = d_(Vj)‘l‘
(n—j) andset D; =D; U d(Vj)Jn(l) and go to Step 5.

Step 5. If j=n gotoStep6else,set i =i+1 and j =i and go to Step 1.

Step 6. Exit.

2.1.2. Tabled values of F*(J (1)), for finite Jaco graphs, J,(1), n <12

For illustration the adapted table below follows from the Fisher algorithm [9] for
J,(1), n <12. Note that the Fisher algorithm determines d*(v;) on the assumption
that the Jaco graph is always sufficiently large, so at least J,(1), n >i+d"(v;).
For a smaller graph the degree of vertex v; is given by d(v;) 5,0 =
d”(v;)+ (n—1i). In [9] Bettina’s theorem describes an arguably, closed formula to
determine d*(v;). Since d”(v;)=n-d"(v;) it is then easy to determine
d(v;), (1) ina smaller graph J,, (1), n<i+d*(v;). The fl-ir -sequence of J,(1) is

denoted F* (J,@).
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Table 1
ieN [d~(v)|d"(v;)=i—-d (v,) F£(J,(1))

1 0 1 (0)

2 1 1 (-1, -1)

3 1 2 i)

4 1 3 (-1, 1,1, -1)

5 2 3 (-1,1,-2,1,1)

6 2 4 1, 4 2, )

7 3 4 (-1,1,-2,3,3,-2, -2)

8 3 5 (-1,1, -2, 3, =5, 3,3, -2)

9 3 6 (-1,1, -2, 3, =5, -5, =5, 3, =2)

10 4 6 (-1,1, -2, 3, -5, 8,8, -5, 3, 3)

11 4 7 (-1,1, -2, 3, -5, 8, -13, 8, =5, =5, 3)

12 4 8 (-1, 1, =2, 3, =5, 8, 13, —13, 8, 8, =5, 3)

It is known that a sequence (d;, d,, ds, ...

, d,) of non-negative integers is a

degree sequence of some graph G if and only if z:’ﬂ, d; is even. It implies that a

degree sequence has an even number of odd entries. Hence, we know that the

+ +
fi -sequence of J,(1) denoted, F~(J,(1)), n € N has an even number of, —fa()

entries. Following from Table 1 the table below depicts the values f iZI(J ),

1*25(0,(0). £¥25(J,(1)) and f*Z4(J, (1) for J,(1), n<12.
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Table 2
ie N [d () [d* ) | F7Zi ()| FZo () | £7Z3(;) | £7Z4(T,(1)
1 0 1 0 0 0 0
2 1 1 2 1 0 0
3 1 2 3 -2 4 4
4 1 3 4 -1 4 8
5 2 3 8 -6 11 16
6 2 4 15 5 11 25
7 3 4 32 -26 35 56
8 3 5 62 -19 50 98
9 3 6 103 0 72 138
10 4 6 211 38 119 251
11 4 7 396 -238 210 402
12 4 8 604 -158 273 566

3. Khazamula Irregularity

Let G~ be a simple directed graph on n>2 vertices labelled

Vi, Va2, V3, ..., V,,. Let all vertices v; carry its * Fibonacci weight, fii related to

d(v;) =d(v"(v;)+d " (v;)). Also let vertex v; be a head vertex of v; and choose

any d(v!') = max(d(v )

Definition 3.1. Let G~ be a simple directed graph on n > 2 vertices with each

vertex carrying its =+ Fibonacci weight, f. For the function f(x)= mx+c,

x € R and m, ¢ € Z, we define the Khazamula irregularity as:

n

irrk(G_)) = Z

i=1

dv}')
[ reax
&

Ji
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Note. Vertices v with d*(v) = 0, are headless and the corresponding integral
terms to the summation are defined zero. Hence, irr, (K~ ) = 0.

Let G be a simple connected undirected graph on n vertices which are labelled,

Vi, V2, V3, ..., v,. Also let G have € edges. It is known that G can be orientated in
2% ways, including the cases of isomorphism. Finding the relationship between the

different values of irr (G™) and irrg (G™) (to follow in Subsection 3.3) in respect

of the different orientations for G in general is stated as an open problem. In this
section, we give results in respect of particular orientations of paths, cycles, wheels

and complete bipartite graphs.
3.1. irry, for paths, cycles, wheels and complete bipartite graphs

Proposition 3.1. For a directed path P;”, n>2 which is consecutively

directed from left to right we have that the Khazamula irregularity,

i) =‘%(n—2)m+nc

Proof. Label the vertices of the directed path P, consecutively from left to

right vy, v,, v3, ..., v,. From the definition

n

irn,(P;”) = Z

i=1

s

aol)
j ()
n

i

it follows that we have

n

2

i=1

dv}')
[ reax
"

Ji

= ‘ J._zlf(x)dx + Ilzf(X)dx ot Lz + Ll f(x)dx

(n—3)-terms

So, we have

n

2

i=1

dvf')
[ rax
"

Ji

_| (1 2 2 1 2 2
= (me +cx)|_1+(n—3)(§mx —i—cx)|1 +0
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= 2m+26—%m+c+(n—3)(2m+26—%m—c)

= %m+3c+%(n—3)m+(n—3)c

. O

= %(n—Z)m—i—nc

Proposition 3.2. For a directed cycle C,” which is consecutively directed

clockwise we have that the Khazamula irregularity,

irn (C,>)=n

im+c
2

Proof. Label the vertices of the directed cycle C,” consecutively clockwise

Vi, V2, V3, ..., V,. So vertices carry the * Fibonacci weight, fl.ji =fi=1. Also a
head vertex is always unique with degree = 2. From the definition

n

irrk(Cn_)) = Z

i=1

E}

)
[ reax
e

i

it follows that we have

n

2

i=1

dv}')
[ reax

Ji

= J.lz f(x)dx + J.lzf(x)dx 4o J.lz F(x)dx

n-terms

= n(% mx? + cx)l 12

= n(2m+2c—%m—c)

= n(ém+c)
2

Proposition 3.3. For a directed Wheel graph W(T)n) with the axle vertex u; and

=ném+c. ]

the wheel vertices vy, vy, ..., v, and the spokes directed (”1’ V; )Vi and the wheel
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vertices directed consecutively clockwise vy, v,, ..., v,,, we have that

(Sn - f2+49 )
= fm+(5n—fn+3)c, if nis even,
irrk(W(fn)) )
(Sn—fn +9)
=l m+ (5n+ f, +3)c], if nis uneven.

Proof. Consider a Wheel graph W(l_’n) with the axle vertex u; and the wheel

vertices vy, vy, ..., v, and the spokes directed (uy, v;),; and the wheel vertices

directed consecutively clockwise vy, vy, ..., v,,.

Case 1. If n is even, then d (ul) is even and carries the + Fibonacci weight, f,,.
Obviously the wheel vertices have d(v;) = 3y;, hence carry the + Fibonacci weight,

fz = _ZVW‘ So from the definition of the Khazamula irregularity we have that:

In
if n is even. This results in,
5| pdof)
irn, = J f(x)dx
9 9 fi
= = — = 2N
= n(2m+3c 2m+2€)+ 2m+3c o m fac
2
_|3 ] I,
= 2nm+5nc+2m+3€ , M Sfuc
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= Mm+(5n—fn+3)c.

Case 2. If n is uneven, then d (ul) is uneven and carries the + Fibonacci weight,

R 3 9 fu
—f- So in the Riemann integral J ; f(x)dx we have Fm+ 3¢ - Smt fnc |-
So the result
(Sn - f2+9 )
irr, (W(T)n)) L (5n+ f, +3)c
if n is uneven, follows. O

Consider the complete bipartite graph K, ,,) and call the n vertices the left-side

vertices and the m vertices the right-side vertices. Orientate K(,, ,,) strictly from

l>r

(n,m)’

left-side vertices to right-side vertices to obtain K

Proposition 3.4. For the directed graph K (l’l_),;), we have that

[n3 —nf,ﬁ]
= fm+(n2—nfm)c, if mis even,
. [—r
lrrk(K(n,m)) ( . 2)
n’ —nf,
= fm+(n2+nfm)c , if m is uneven.
[—>r

Proof. For the directed graph K we have that all left-side vertices say

(n,m)
V|, Vg, o v, have d*(v;) = m, whilst all right-side vertices say uy, iy, ..., U,

have d”(u;) = n and d* (u;) = 0.
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Case 1. If m is even it follows from the definition that,

irry (K(l:;;)) =n

jf F(x)dx

So, we have that

irr (K(l_")) =

n,m

|
S

2 2
=n—m+nc (%m+fmc]
3,0
g & anm)m+(n2—nfm)c

Case 2. If m is uneven the left-side vertices all carry the * Fibonacci weight,

— fm- Hence, the result follows as in Case 1, accounting for —f,,,. O

Example problem 1. Let n =1 or 5 and f(x) = mx. Prove that irrk(K(?n)) =

0or | 12m| and,
-0
irn, (K(ll_;;) or
= 5(irn; (K(?n))) = 60| m |.
Proof. Let n=1 and let f(x)=mx. From the definition of irr, (G™) it

follows that

. ! 1 2.1
lrrk(K(fn)) = I_1| mx-dx|fm_v1 = ‘ 7 mx 1) ‘ =0.

We also have that

1
irr (K(fn)) = I_l| mx - dx |f0r—u1
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=0.

S mx” |

_(1 2
2

Let n =5 and let f(x) = mx. Now, we have that

=|12m|.

1
. 1 1
lrrk(K(Tn)) = J_5| mx - dx |for_v1 = ‘ mez L

For i””k(K(fn)) we have

3 65
Z I_l| mx-dx | gy im0,
i=1

8 L 25
:SJ. |mx-dx| ZSme 12 =5|12m|=60|m|.
-1

3.2. Khazamula’s theorem

Consider two simple connected directed graphs, G~ and H . Let the vertices

of G~ be labelled v, vy,..,v, and the vertices of H ™~ be labelled
Uy, Uy, ..., Ut,. Define the directed join as (G + H )™ conventionally, with the

arcs {(v;, u;)|Vv; e V(G™), uj e V(H™)}.

Theorem 3.5. Consider two simple connected directed graphs, G~ on n

. - .
vertices and H ™~ on m vertices then,

Vin m “ih
im (G~ + H™)™) = nﬁ(H " f(x)dx+Zjd( " .

yeV(GZ+H™)™ i=1 © Jd(uj)+1
Proof. Note that in the graph G the maximum degree
AG™”)=max((d"(v))+d (v)))<n-1

for at least one vertex v,. If such a vertex v, is indeed the head vertex of a vertex

v;, then
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n

2,

i=1

E}

dvy')
[ reax
e

i

A(G
will contain the term JA fi ) f(x)dx.

In H™ the maximum degree A(H )= max(d™ (u;)+d (uy)) =1 for some

vertex u,. Hence, in the directed graph (G + H )7, all terms of

n

2

i=1

+
i

d()
J f(x)dx

reduces to zero and are replaced by the terms
AHT)+n
> f(x) dx,
fi IvieV((G_)+H_))_>)
because A(G7)<n-1<AH”)+n.
In respect of H > we have that each d(u; )y; increases by exactly 1 so the value
of fd(”i)v' switches between + and adopts the value f;(,.)+1. Similarly all head

vertices’ degree increases by exactly 1. These observations result in

. - -\ A(H)en o [ )
im(GT” +H)7) = nI . f(x)dx-i—ZI F(x)dx|. O
fi lv,‘GV((G—)-FH%)_)) i=1 fd(u[)+l

Example problem 2. An application of the Khazamula theorem to the graph

(C,” + K;)~ inrespect of f(x) = mx, results in
. 1 .
irn, ((C,”> +K)7) = g(n2 - 4)lrrk(cn—>)|f(x):mx )

3.3. Khazamula c-irregularity for orientated paths, cycles, wheels and complete
bipartite graphs

Let f(x)=Vr?—x%, xeR and r = max{d(vi)vvi’d—(vi)zp or | () |Vv,~ 1.
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We define Khazamula c-irregularity as

n
irg (G7) = Z
i=1

aoh
j ()
e

It is known that

b 2
J. Vr2 - x?dx = (%x\lrl - x? +%arcsin£]|2.
a r

Also note that arcsin® applies to 0 € [—%, g} to ensure a singular value for the

respective integral terms.

Proposition 3.6. For a directed path P;”, n >3 which is consecutively
directed from left to right we have that the Khazamula c-irregularity,
irr{ (P,7) = (n-2) (% - gj

Proof. Label the vertices of the directed path P,”, n >3 consecutively from
left to right v, v,, v3, ... v,. Note that r = max{d(v;),,. . or | (/) Iy} =2

From the definition

n

irg (P,”) = Z

i=1

il

dovl)
[ s

i

it follows that we have

nledl) 2 2 2 1
ZI+ f(x)dx| = J f(x)dx+j f(x)dx+---+J +J f(x)dx
| J -1 1 1 1
(n—3)-terms
So, we have
2| pdh)
DL
im1 |

2 2
= ‘ [%x\/rz - x? +%arcsin£]|%l +(n— 3)[%x\/r2 - x? +r7arcsin£]|12
r r
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= (% V4 — x? + 2arcsin %) |%1 +(n - 3)(% xV4 — x? + 2arcsin %) |12 ‘
o A3 oan 43
=l|=-—|+0r-3)=-—
3 2 3 2
=|(n-2) 2 _ﬁ
3 2
on A3
—(n-2)| Y2 0
-2
Proposition 3.7. For a directed cycle C,” which is consecutively directed
clockwise we have that the Khazamula c-irregularity, irr{ (C,”) = n(% - @j

Proof. Label the vertices of the directed cycle C,” consecutively clockwise

. . . . =
Vi, V2, V3, ..., V,. So all vertices carry the * Fibonacci weight, fi;. = f1 =1. Also
l

a head vertex is always unique with degree = 2. So
r = max{d(v; )Wi, or | (fii) |VV[} =2.

From the definition

n

irrk(Cn_)) = Z

i=1

E)

dil)
j ()
R

i

it follows that we have

n

2

i=1

()
[ rax
e

i

= sz(x)dx + Lz flx)dx + -+ sz(x)dx

n-terms

(% xV4 — x? + 2arcsin %) |12 ‘

=n

=n

(0 + 2 arcsinl — ? — 2 arcsin %j‘
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Proposition 3.8. For a directed Wheel graph W(T)n) with the axle vertex u; and

the wheel vertices vy, v,, ..., v, and the spokes directed (uy, v;),; and the wheel

vertices directed consecutively clockwise vy, v,, ..., v,,, we have that:
=4\/§+9n+18arcsin%, if n=3or4,

irrkW(l_:l) n+l)\[ fn -9 +(n+1) f" arcsm 3 f" A‘, if n>6and even,

, if n>5and uneven,

= %(n+l)\/fn2—9 +(n+1)f£’ arcsinfi+%+3
n

with

(ﬂfn -4 + 22 f" arcsin f—] and B = n(\/ fn —arcsm f_]

n

Proof. Consider a Wheel graph W(l_)n) with the axle vertex u; and the wheel

vertices vy, vy, ..., v, and the spokes directed (u;, v;)y; and the wheel vertices

directed consecutively clockwise vy, V5, ..., V,,.

Case 1. If n = 3, then we have that

3 3
irr;f(W(?3))=“ «/9—x2dx+3j V9 — x?dx |,
’ ) )

Sfor,uy for,v;

i=1,2 3.

Therefore,

) =4[ [ b=




ANOTEON f * _ZAGREB INDICES IN RESPECT OF JACO GRAPHS ... 33
:4‘(;x\19—x2 +3arcs1n jl 2‘
= 4‘ (% arcsin 1 — (— V9 -4 — % arcsin %D ‘

= 4x/§+9n+18arcsin%.

If n = 4, then
irrk((l4) ‘J\@ xdx+4IV —x%dx |, i=1,23, 4
for,uy for,v;
Hence, the result follows.
Case 2. If n > 6 and even, then we have
3 3
irrkC(W(l_)n)) = ‘ I V2 - x2dx+ nJ N =xPdx |, i=12 .. n
’ fn -2
Sfor,uy Sfor,v;
So, we have
irrkc (W(?n))
= (— xy fn - x? + ~—— arcsin fi] + n(— Xy fn -x2 4+ —arcsm fLJ |§2
n n

= 1[ -9 +—arcsmi—(fn an fn fn arcsml}
( \ fn + = arcsm —-—- (—\/ fn - f" arcsin —D ‘

In

2 2
:‘%ﬁfnz -9 +f7"arcsinfi—(f—2”\/fn2 — fn2 +f7"arcsinlJ
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+ n( v fn + — arcsm — +4 fn + ~—— arcsin f_]

n

[T

(n +1)\/fn2 -9 +(n+ 1)f—”arcs1n f f” + A,

n

2
with A = n(\/ fn2 -4 + an arcsin fi]
n

Case 3. Similar to Case 2 and accounting for n > 5 and uneven. 0

Consider the complete bipartite graph K, ,,) and call the n vertices the left-side

vertices and the m vertices the right-side vertices. Orientate K(,, ,,) strictly from

left-side vertices to right-side vertices to obtain K (lrl_)”rl)

Proposition 3.9. For the directed graph K (ln_’nz ) we have that:

2
=nT4n—A, if n2f, and mis even,
n°m . .
=T+A, if n2 f, and m is uneven,
. l
lrrkc(K(:”rl)) )
T
=|B %, if f,, >nand mis even,
fam| .
= B+T, if f, > n and m is uneven,
2 2
with A = f—m\/nz - f,% +n—arcsinf—m and B = ﬁ\/fmz —n? +f—marcsini.
2 2 n 2 2 fm
Proof. For the directed graph K(ln_)”rl) we have that all left-side vertices say
Vi, V3, -y v, have d¥(v;)=m, whilst all right-side vertices say uy, uy, ...,

have d(u;) =n and d* (u;) = 0
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Case 1. Since d ™ (u;) = 0, Vi the terms in

n

2.

i=1

b}

)
[ s
e

i

stem from vertices v;, Vi only. Furthermore, since
r = max{d (y; )Vi,d_(ui)zl’ or f,}
and n 2 f,,, we have r = n.

It follows that

irrg (K(l,l_)r;)) =n

I Vnz —x2dx

n
bt

2

2
1 n . X
= [—x\/nz - x2 +7arcsm—jl;
n m

2 2
= %arcsin 1- [me \/n2 - fn% + %arcsin f—,’;’J

with

2
A =f7m\/n2 —f,% +n7arcsinf7m.

Case 2. Similar to Case 1 and accounting for m is uneven.

Case 3. Similar to Case 1 and accounting for f,, > n, miseven.
Case 4. Similar to Case 1 and accounting for f,, > n, m is uneven. O

[Open problem: If possible, generalize Khazamula’s irregularity for simple

directed graphs.]
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[Open problem: Find a closed or, recursive formula for f iZl(Jn(l)),
FFZy(1a ), f25(7, (1) and 724 (7, (1)]

[Open problem: Where possible, describe the terms of the Khazamula theorem
in terms of irrn, (G™) and irr, (H ™) for specialised classes of simple directed
graphs.]

[Open problem: If possible, formulate and prove Khazamula’s c-Theorem
related to Khazamula c-irregularity for simple directed graphs in general.]

[Open problem: Let G be a simple connected undirected graph on n vertices
labelled, v;, vy, v3, ..., v,. Also let G have € edges. It is known that G can be
orientated in 2% ways, including the cases of isomorphism. Find the relationship

between the different values of irr (G™) in respect of the different orientations.]

[Open problem: Let G be a simple connected undirected graph on n vertices

labelled, vy, vy, v3, ..., v,,. Also let G have € edges. It is known that G can be

orientated in 2% ways, including the cases of isomorphism. Find the relationship

between the different values of irrf (G™) in respect of the different orientations.]

Open access. This paper is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution and reproduction in any

medium, provided the original author(s) and the source are credited.
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